ECAM – Electronic Centralized Aircraft Monitor – was invented by Airbus. It is a system that monitors aircraft functions and relays them to the pilots. It was designed to ease pilot stress in abnormal and emergency situations.
So how does it work?
The basic concept behind ECAM (and other monitoring systems) is automatic performance of monitoring duties for the pilot. When a problem is detected or a failure occurs, the primary display, along with an aural and visual cue, alerts the pilot. Corrective action that needs to be taken is displayed, as well as suggested action due to the failure. By performing system monitoring automatically, the pilot is free to fly the aircraft until a problem occurs.
ECAM systems only monitor airframe systems. Engine parameters are displayed on traditional full-time cockpit gauges. Later model ECAM systems incorporate engine displays, as well as airframe.
An ECAM system has two CRT monitors. In newer aircraft, these may be LCD. The left or upper monitor, depending on the aircraft panel layout, displays information on system status and any warnings associated corrective actions. This is done in a checklist format. The right or lower monitor displays accompanying system information in a pictorial form, such as a diagram of the system being referred to on the primary monitor.
The ECAM monitors are typically powered by separate signal generators. Aircraft data inputs are fed into two flight warning computers. Analog inputs are first fed through a system data analog converter and then into the warning computers. The warning computers process the information and forward information to the signal generators to illuminate the monitors.
There are four basic modes to the ECAM system: flight phase, advisory, failure related, and manual. The flight phase mode is normally used. The phases are: preflight, takeoff, climb, cruise, descent, approach, and post landing. Advisory and failure–related modes will appear automatically as the situation requires. When an advisory is shown on the primary monitor, the secondary monitor will automatically display the system schematic with numerical values. The same is true for the failure-related mode, which takes precedent over all other modes regardless of which mode is selected at the time of the failure. Color coding is used on the displays to draw attention to matters in order of importance. Display modes are selected via a separate ECAM control panel.
**Note
The ECAM (Electronic Centralized Aircraft Monitoring) system is made up of two primary components, two SDAC’s (System Data Acquisition Concentrators) and two FWC’s (Flight Warning Computers). A loss of only one SDAC or only one FWC will not result in any loss of function. The second computer can handle all functions alone. The SDAC’s receive data from sensors and will send signals to 3 DMC’s (Display Management Computer) which generate the screen image. The SDAC’s also send signals to the FWC. The FWC will generate various warning/caution messages.
The ECAM (Electronic Centralized Aircraft Monitoring) system is made up of two primary components, two SDAC’s (System Data Acquisition Concentrators) and two FWC’s (Flight Warning Computers). A loss of only one SDAC or only one FWC will not result in any loss of function. The second computer can handle all functions alone. The SDAC’s receive data from sensors and will send signals to 3 DMC’s (Display Management Computer) which generate the screen image. The SDAC’s also send signals to the FWC. The FWC will generate various warning/caution messages.
The E/WD (Engine/Warning Display) is the instrument panel display that shows normal engine readings and ECAM messages. The SD (System Display) is directly below the E/WD and normally shows system pages or status. For information on switching screens in case of failures see EFIS later in this section.
ECAM uses color to indicate the importance of the indication–
RED: Immediate action required
ORANGE (AMBER): Awareness but no action required
GREEN: Normal operation
WHITE: Titles and remarks
BLUE (CYAN): Actions to be carried out or limitations
PURPLE (MAGENTA): Special messages (i.e. inhibition messages)
Recalls normal or automatic selection of functions which are temporarily used. It causes a green, amber, or magenta message on engine warning display (E/WD).
Note: pulsing green or amber indications are approaching limits
If a FWC fails the Master Caution and Master Warning lights will indicate the failure (along with a warning from ECAM). The failure will be indicated by the upper or lower light in both the Master Caution and Warning light being out. If the #1 FWC fails then the captains upper lights would be out and the F/O’s lower lights would be out. If #2 FWC fails the reverse lights will go out.
Sources:
Prepared by: Air.Net Team
ليست هناك تعليقات:
إرسال تعليق